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Evaluation of Separation Mechanism Design
for the Orion/Ares Launch Vehicle

Abstract:
As a part of the preliminary design work being performed for the Orion vehicle, the 
Orion to Spacecraft Adaptor (SA) separation mechanism was analyzed and sized, 
with findings presented here. Sizing is based on worst case abort condition as a result 
of an anomaly driving the launch vehicle engine thrust vector control hard-over 
causing a severe vehicle pitch over. This worst case scenario occurs just before 
Upper Stage Main Engine Cut-Off (MECO) when the vehicle is the lightest and the 
damping effect due to propellant slosh has been reduced to a minimum. To address 
this scenario and others, two modeling approaches were invoked. The first approach 
was a detailed 2-D (Simulink) model to quickly assess the Service Module Engine 
nozzle to SA clearance for a given separation mechanism. The second approach 
involved the generation of an Automatic Dynamic Analysis of Mechanical Systems 
(ADAMS) model to assess secondary effects due to mass centers of gravity that were 
slightly off the vehicle centerline. It also captured any interference between the Solar 
Arrays and the Spacecraft Adapter. A comparison of modeling results and accuracy 
are discussed. Most notably, incorporating a larger SA flange diameter allowed for a 
natural separation of the Orion and its engine nozzle even at relatively large pitch 
rates minimizing the kickoff force. Advantages and disadvantages of the 2-D model 
vs. a full 3-D (ADAMS) model are discussed as well.
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Nominal Separation Event
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Separation mechanisms traded:

Compression springs Pyrotechnic Gas Thruster Pneumatic actuators

Separation 
Spring

Frangible Nut

Preload Rod

Bolt Catcher

•Low part count
•High reliability
•Well known
•simple

•Higher specific thrust (~10x 
springs’)

•Higher part count, possibly 
lower reliability

•Higher specific thrust   
(~5x springs’)

•Higher part count, possibly 
lower reliability

Graphics supplied courtesy of Scot, Inc.

From 1983 to 2005, Spacecraft and Fairing separation systems accounted for 10% of all launch 
failures, according to AAS 03-071 paper. Vehicle dynamics accounted for another 4%.
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Run vehicle separation 
simulation for abort case to 

size actuators

Run simulations for max/min 
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Run simulations for max/min 
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Run simulations for 
dispersions on mass properties

Design parameters traded/optimized:
• Actuator  type
• Actuator force/stiffness
• Actuator stroke
• Spacecraft Adaptor (SA) flange diameter
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Design study variables: 
• Upper Stage residual thrust (0 - max lbs)

• Vehicle dump rate & direction (0-35 deg/sec)

• Spring-out condition (1 in 12)

• Vehicle mass property dispersions (+/- 10%)

Preliminary Design Process
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Investigate 
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ADAMS results

J-2x Engine on, Dump rate fixed at 5 deg/sec
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2-D model vs 3-D (ADAMS) model comparison
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“Natural SeparationNatural Separation” Concept

For 2 bodies attached and under constant pitch rate, for a given protrusion diameter and 
length, upon separation:
•There exists a cavity diameter D that the protrusion will naturally clear at, regardless of 
pitch rate. 
•The bodies will separate and protrusion will clear body 2 at a prescribed angular rotation 
regardless of pitch rate

This neglects outside forces acting on the bodies, which can easily be considered later in design process

Body 2                      

Body 1
Body 1

protrusion

Cavity 
diameter

Pitch  rate
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Making use of Natural SeparationNatural Separation
Falcon 1 Demo Launch- Staging anomaly 

Camera 
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Protrusion 
length

*All information borrowed from SpaceX public website:   www.spacex.comFalcon 1 stack
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Orion Natural SeparationNatural Separation Dynamics Benefits At Work
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Recontact at Low Dump Rate
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• For two bodies joined and tumbling at a constant angular 
velocity, when separated will each maintain that same angular 
velocity after separation (neglecting outside forces)

• For spacecraft mechanism design sizing, the abort/off-nominal 
case is not always the driving design case

• Independent analysis and verification of critical vehicle 
dynamics can be beneficial in avoiding costly corrections later

• Intelligent preliminary sizing of spacecraft separation 
mechanism geometry sensitive to separation dynamics can 
improve overall mission reliability and save on mechanism 
weight, especially if Natural Separation concepts are invoked 
early the design

Lessons Learned
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Conclusions

• Lower fidelity, 2-D equations of motion model can be very useful in 
separation mechanism design. It provides insight into separation events 
and the many parameters and their relative sensitivities. 

• A more detailed 3-D geometric dynamics model is helpful in 
considering out of plane effects which may be significant such as CG 
offsets, single actuator/spring failures, and product of inertia terms. 

• For the Orion crewed vehicle separation system a simple mechanical 
spring mechanism has been chosen as the baseline design because 
the spacecraft geometry was sized efficiently, minimizing the required 
actuator force even with significant force margin (25%) applied.
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Further information: Restricted NASA TM Spacecraft Separation System Dynamics 
for the Orion/Ares launch Vehicle.  To include vehicle mass properties, full 
Simulink code, tank slosh modeling.  
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Simulink Flowchart
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